11-11-2022 |
Deep learning para reducción de artefactos en tomografía dental
En la tomografía dental los implantes metálicos, como tapaduras, producen artefactos visuales que limitan la utilidad de estas imágenes en la práctica. La teoría matemática de la tomografía permite proponer un método para reducir estos artefactos. Sin embargo, la implementación de este método en la práctica es complejo. Este proyecto tiene por objetivo evaluar el uso de herramientas de aprendizaje profundo para implementar este método, o bien para desarrollar uno con un mejor desempeño a partir de datos sintéticos. Trabajo conjunto entre Prof. Carlos Sing Long (IMC) y Prof. Benjamin Palacios (MAT).
Prerequisitos:
no tiene.
Tiene un método de evaluación Nota 1-7, con 10 créditos y tiene 1/2 vacantes disponibles |
Mentor(es): Ver en la plataforma |
11-11-2022 |
Prerequisites:
None.
Evaluation method: Nota 1-7, with 1/2 available vacants |
Mentor(s): Open in the plataform |